Аэрокосмическое наноструктурирование имеет решающее значение для разработки и изготовления отличающихся малой массой и высокой прочностью термически устойчивых материалов для самолетов, ракет, космических станций и исследовательских спутников. Кроме того, космические условия с низкой гравитацией и высоким вакуумом могут обеспечить прорывные направления в самих технологиях получения наноструктур и наносистем. Космические технологические установки могут стать одним из важных путей создания наносистем.
Области применения наноструктур в аэрокосмических системах:
• устойчивые к космической радиации компьютерные системы с малым энергопотреблением и высокими эксплуатационными характеристиками;
• наномасштабное приборное обеспечение для космических станций и перспективных спутников малых размеров;
• авионика (авиационная электроника) нового поколения на основе наноструктурных датчиков и наноэлектроники;
• теплозащитные, жаропрочные и износостойкие наноструктурированные покрытия;
• наномодифицированные полимеры и полимерные композиты с повышенными усталостными характеристиками;
• увеличение в несколько раз энергетической эффективности солнечных батарей и развитие альтернативных энергетических систем.
Важнейшая задача современного самолетостроения – облегчение конструкции летательного аппарата. Замена от 50 до 30 млн. заклепок, используемых сегодня при изготовлении корпуса большого пассажирского самолета, на сварные швы позволила бы значительно облегчить его, удешевить производство и существенно улучшить эксплуатационные характеристики. Такая замена возможна только при выполнении условия равенства прочности сварного шва и прочности свариваемого материала. Конструкция самолета должна иметь все детали с одинаковой прочностью. Однако современные методы сварки авиационных материалов (алюминиевых и титановых сплавов) не позволяют в полной мере выполнять это требование.
Ученые Института теоретической и прикладной механики СО РАН (ИТПМ СО РАН) разработали лазерную сварку с применением наночастиц, позволяющую существенно улучшить прочностные свойства сварного шва. Основная идея новой технологии – управление процессом кристаллизации при сварке с помощью наночастиц тугоплавкого соединения (например, карбида титана), которые вводят в сварной шов. Тем самым повышаются механические свойства (прочность и пластичность) металла шва, возрастает в несколько раз относительное удлинение, увеличиваются предел прочности и предел текучести.